Distributed Generalized Cross-Validation for Divide-and-Conquer Kernel Ridge Regression and Its Asymptotic Optimality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divide and Conquer Kernel Ridge Regression

We study a decomposition-based scalable approach to performing kernel ridge regression. The method is simple to describe: it randomly partitions a dataset of size N into m subsets of equal size, computes an independent kernel ridge regression estimator for each subset, then averages the local solutions into a global predictor. This partitioning leads to a substantial reduction in computation ti...

متن کامل

Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates

We study a decomposition-based scalable approach to kernel ridge regression, and show that it achieves minimax optimal convergence rates under relatively mild conditions. The method is simple to describe: it randomly partitions a dataset of size N into m subsets of equal size, computes an independent kernel ridge regression estimator for each subset using a careful choice of the regularization ...

متن کامل

Asymptotic optimality of likelihood-based cross-validation.

Likelihood-based cross-validation is a statistical tool for selecting a density estimate based on n i.i.d. observations from the true density among a collection of candidate density estimators. General examples are the selection of a model indexing a maximum likelihood estimator, and the selection of a bandwidth indexing a nonparametric (e.g. kernel) density estimator. In this article, we estab...

متن کامل

Divide and Conquer Local Average Regression

The divide and conquer strategy, which breaks a massive data set into a series of manageable data blocks, and then combines the independent results of data blocks to obtain a final decision, has been recognized as a state-of-the-art method to overcome challenges of massive data analysis. In this paper, we merge the divide and conquer strategy with local average regression methods to infer the r...

متن کامل

Explicit Solution to the Minimization Problem of Generalized Cross-Validation Criterion for Selecting Ridge Parameters in Generalized Ridge Regression

This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2019

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2019.1586714